메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chung-Hyeon Nam (Korea University of Technology and Education) Kyung-Sik Jang (Korea University of Technology and Education)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.17 No.3
발행연도
2019.9
수록면
191 - 197 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Morphological analysis is used for searching sentences and understanding context. As most morpheme analysis methods are based on predefined dictionaries, the problem of a target word not being registered in the given morpheme dictionary, the so-called unregistered word problem, can be a major cause of reduced performance. The current practical solution of such unregistered word problem is to add them by hand-write into the given dictionary. This method is a limitation that restricts the scalability and expandability of dictionaries. In order to overcome this limitation, we propose a novel method to automatically expand a dictionary by means of use-case analysis, which checks the validity of the unregistered word by exploring the use-cases through web crawling. The results show that the proposed method is a feasible one in terms of the accuracy of the validation process, the expandability of the dictionary and, after registration, the fast extraction time of morphemes.

목차

Abstract
I. INTRODUCTION
II. RELATED WORKS
III. AUTOMATIC DICTIONARY EXPANSION
IV. EXPERIMENTAL RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000405678