메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
여창재 (광운대학교) 유정호 (광운대학교)
저널정보
한국퍼실리티매니지먼트학회 한국퍼실리티매니지먼트학회지 한국퍼실리티매니지먼트학회지 제12권 제2호
발행연도
2017.12
수록면
21 - 32 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objective information related to energy simulation is required in the stages of using energy performance program (ECO2) for evaluating the current building energy efficiency rating. However, if 2D drawings are used for evaluating building energy efficiency rating, required information extraction and input are done manually and work hour depends on user's ability and information are sometimes omitted or errored, which leads to work inefficiency. If such problems are also considered in connection with the changes in design information management environment related to BIM's extended application as mentioned earlier, problems caused by 2D-based can be solved. In this study, we defined the method of extracting and extractable informationfrom in BIM by analyzing the energy efficiency rating certification work status and related request information. In addition, we propose a method to create and manage information that is not present information in BIM but needs information to be managed by BIM. Also, We proposed a method to modify the BIM can use in the building energy efficiency class certification. Based on this, we developed a system to support the building energy efficiency class certification by using BIM. Through case study, we confirmed that the efficiency of building energy efficiency class certification using BIM is higher than that of existing method. This study is expected to minimize data omission and error in the creating process of input information required for building energy performance evaluation and improve the efficiency of building energy efficiency rating certification tasks by automatizing information input process.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0