메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Junwoo Park (Korea Advanced Institute of Science and Technology) Hyochoong Bang (Korea Advanced Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
178 - 183 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A factor graph optimization (FGO)-based integration of the inertial navigation and terrain-referenced navigation (TRN) that can cope with biased input is presented. Due to the slow dynamics of biases included in the inertial navigation system (INS) and sensor measurements, nodes designating such biases are sparsely instantiated. Considering non-analytic and highly ambiguous characteristics of terrain elevation and the database, the TRN is mostly tackled with non-parametric Bayesian estimator, such as the particle filter (PF). Nevertheless, the PF practically necessitates larger number of particles as system dimension grows, where in this case the nominal state space is augmented with bias sources.
We demonstrate that fixed-lag smoothing of FGO, which optimizes a windowed bundle of factors, can perform as well as or better than the PF approach. The resultant solution becomes accurate with better convergence behavior, particularly when the TRN is posed under biases of the terrain measurement and position incremental designated by the INS, thus, when the derived factor graph gets more interconnected. Multiple numerical experiments are performed to evaluate the proposed approach.

목차

Abstract
1. INTRODUCTION
2. PRELIMINARIES
3. METHODOLOGY
4. NUMERICAL EXPERIMENTS AND DISCUSSIONS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264095