메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Park Chan-Young (Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea.) Kim Minsoo (Research and Development, Baikal AI Inc., Seoul, Korea.) Shim YongSoo (Department of Neurology, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea.) Ryoo Nayoung (Department of Neurology, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea.) Choi Hyunjoo (Department of Communication Disorders, Korea Nazarene University, Cheonan, Korea.) Jeong Ho Tae (Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea.) Yun Gihyun (Research and Development, Baikal AI Inc., Seoul, Korea.) Lee Hunboc (Research and Development, Baikal AI Inc., Seoul, Korea.) Kim Hyungryul (Research and Development, Baikal AI Inc., Seoul, Korea.) Kim SangYun (Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Korea.) Youn Young Chul (Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea.Department of Medical Informatics, Chung-Ang University College of Medicine, Seoul, Korea.)
저널정보
대한치매학회 Dementia and Neurocognitive Disorders(대한치매학회지) Dementia and Neurocognitive Disorders(대한치매학회지) 제23권 제1호
발행연도
2024.1
수록면
1 - 10 (10page)
DOI
10.12779/dnd.2024.23.1.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer’s disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer’s disease dementia (ADD). Methods: This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma. Results: A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset. Conclusions: Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0