메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오봉식 (아주대학교) 김기홍 (코리아에프티) 이동철 (코리아에프티) 이정철 (KG모빌리티) 서금석 (신일화학공업)
저널정보
한국신뢰성학회 신뢰성응용연구 신뢰성응용연구 제24권 제4호
발행연도
2024.12
수록면
354 - 367 (14page)
DOI
10.33162/JAR.2024.12.24.4.354

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study focuses on monitoring the functional safety and fault health of hydrogen fueling station (HRS) components, including coolers, compressors, and dispensers. Using the HRS input power quality monitoring (PQM) device, this study aims to predict anomalies in the operations of these systems.
Method: A fault detection and diagnosis model based on long short-term memory (LSTM)-autoencoder was developed. Power data for model training was collected through the GEMS monitoring system at Jingok Station. Among the condition-based maintenance (CBM) functional safety monitoring conditions, error measurement parameters such as sound, vibration, and current were analyzed to detect and diagnose errors. The LSTM-autoencoder processes this data to predict anomaly occurrences.
Results: By integrating the PQM device with the HRS power input, the CBM+ of hydrogen compressors was enhanced. Data collected over three months from the developed PQM measurement device installed in the Gwangju HRS input power source revealed that the LSTM-autoencoder model could predict HRS failures approximately seven days in advance.
Conclusion: The LSTM-autoencoder model, trained on power data from the GEMS monitoring system at Jinkok Station in Gwangju, demonstrated accurate failure detection and early warning
capabilities. It provides alerts 1–7 days before potential failures, enhancing the reliability and safety of HRS operations.

목차

1. 서론
2. 수소충전소 운영 및 CBM 모니터링
3. LSTM-AE
4. 실험 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091261996