메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
우종필 (세종대학교)
저널정보
한국서비스경영학회 서비스경영학회지 서비스경영학회지 제16권 제3호
발행연도
2015.9
수록면
161 - 181 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Structural equation modeling and path analysis have a common character that can simultaneously estimate several causal relationships among variables, but these two technique are categorized by the existence of measurement errors. While structural equation modeling estimates path coefficient without measurement errors of observed variables, path analysis estimates path coefficient with them. To solve this limitation, several statistical techniques which calculating measurement errors in the path analysis model have been introduced, especially, ‘(1-α)×variance’ technique is generally used among them. However, very few empirical studies that examine the impact of ‘(1-α)×variance’ technique on path coefficients have been researched.
Based on this issue, in this study, data were classified as 4 samples (2×2) in terms of measurements reliability and variance that influence measurement errors, and then the statistical results of samples were compared. Also, Cronbach"s alpha and composite reliability were used as reliability coefficient individually in ‘(1-α)×variance’ technique.
The study shows that the results of ‘(1-α)×variance’ technique in path analysis are much similar to the those of structural equation modeling than those of common path analysis. Especially, as the measurement errors has increased, the path coefficients in ‘(1-α)×variance’ technique has shown accurate results. However, there is no big differences between when cronbach"s alpha used as reliability coefficient and composite reliability used as reliability coefficient in ‘(1-α)×variance’ technique.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구문제의 제기
Ⅳ. 실증분석
Ⅴ. 연구결과 및 시사점
Ⅵ. 연구 한계점 및 시사점
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-325-001924180