메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승주 (서울과학기술대학교) 박구만 (서울과학기술대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제25권 제5호
발행연도
2020.9
수록면
776 - 788 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 딥러닝을 이용한 차종 인식과 자동차 번호판 문자 인식 시스템을 제안한다. 기존 시스템에서는 영상처리를 통한 번호판 영역 추출과 DNN을 이용한 문자 인식 방법을 사용하였다. 이러한 시스템은 환경이 변화되면 인식률이 하락되는 문제가 있다. 따라서, 제안하는 시스템은 실시간 검출과 환경 변화에 따른 정확도 하락에 초점을 맞춰 1-stage 객체 검출 방법인 YOLO v3를 사용하였으며, RGB 카메라 한 대로 실시간 차종 및 번호판 문자 인식이 가능하다. 학습데이터는 차종 인식과 자동차 번호판 영역 검출의 경우 실제 데이터를 사용하며, 자동차 번호판 문자 인식의 경우 가상 데이터만을 사용하였다. 각 모듈별 정확도는 차종 검출은 96.39%, 번호판 검출은 99.94%, 번호판 검출은 79.06%를 기록하였다. 이외에도 YOLO v3의 경량화 네트워크인 YOLO v3 tiny를 이용하여 정확도를 측정하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 전체 시스템 구조도
Ⅳ. 딥러닝 기반의 차종 인식 모듈
Ⅴ. 딥러닝 기반의 번호판 검출 모듈
Ⅵ. 딥러닝 기반의 번호판 문자 인식 모듈
Ⅶ. 실험 및 분석
Ⅷ. 결론
참고문헌 (References)

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0