메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yong-Geon Kim (Korea University) Minwoo Na (Korea University) Jae-Bok Song (Korea University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
833 - 836 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
When performing robotic assembly, a task should be conducted through force-based control such as impedance control. Using impedance control, it is possible to control the contact force by appropriately adjusting the impedance parameters. However, the impedance parameters should be set by the user because it is difficult to accurately recognize the dynamics of the contact environment, which takes a lot of time because it should be performed whenever the assembly task changes. Moreover, the parameters may not be optimal because it depends on the experience and skill level of the user. To this end, a reinforcement learning-based impedance parameter tuning method is proposed in this study. Since this method uses only the physics-based robotic simulation on the virtual environment, there is no risk of damaging the robots or parts and learning time can be significantly reduced. The proposed method was verified by assembling an HDMI connector with a tolerance of 0.03 mm. Impedance parameters were learned in the virtual environment and transferred to the real environment. Finally, it was confirmed that parameter tuning for impedance without the aid of the user is possible by using the proposed method.

목차

Abstract
1. INTRODUCTION
2. REINFORCEMENT LEARNING FOR IMPEDANCE PARAMETER TUNING
3. EXPERIMENTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0