메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전예진 김진이 (한국항공대학교) 안준선 (한국항공대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제2호
발행연도
2022.4
수록면
381 - 390 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계학습 이미지 인식 기술의 발전에 따라 이를 악성코드 검출에 적용하는 방법이 연구되고 있다. 그 대표적인 접근법으로 악성코드 파일을 이미지로 변환하고 이를 CNN과 같은 딥러닝 네트워크에 학습시켜 악성코드 검출과 분류를 수행하는 연구가 진행되어 의미 있는 결과가 발표되고 있다. 본 연구에서는 기계학습을 사용한 악성코드 검출에 효과적인 이미지 생성방법을 제시하고자 한다. 이를 위하여 이미지 생성의 여러 선택 요소에 따른 악성코드 검출의 성능을 실험하고 분석하였으며, 그 결과를 반영하여 명령어 흐름의 특성을 좀 더 명확하게 나타낼 수 있는 선형적 이미지 생성방법을 제시하고 이 방법이 악성코드 검출의 정밀도를 높일 수 있음을 실험을 통하여 보였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 이미지 인식 기반 악성코드 판별 모델
IV. 실험
V. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001127793