메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최에스더 (신한대학교 뷰티헬스사이언스 학부 교수) 이명주 (건국대학교 K뷰티산업융합학과 겸임교수) 서수연 (신한대학교 뷰티헬스사이언스학부 교수)
저널정보
한국미용학회 한국미용학회지 한국미용학회지 제28권 제6호
발행연도
2022.12
수록면
1,373 - 1,382 (10page)
DOI
https://doi.org/10.52660/JKSC.2022.28.6.1373

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, global brands have cited K-beauty as the main keyword that inspires product innovation, and K-beauty is also mentioned as a trendy keyword in famous beauty stores, such as preparing a K-beauty section. This study conducted unstructured big data analysis to confirm trends of K-beauty. To this end, keywords related to K-beauty were collected through online communication such as Naver, Daum, and Google using the social network analysis program called Textom. The collection period was set from Jan 2020 to AUG 2022, and a total of 24.683 keywords were collected, and a total of 60 keywords were used for the study by refining unnecessary keywords. The results are as follows. First, performing frequency, TF-IDF analysis, important keywords such as cosmetic products, beauty expo, premium market, and beauty industry were presented. Next, semantic network analysis showed that degree centrality was cosmetic products, beauty expo, and premium market, closeness centrality was award, yakson house, and beauty promotion. betweeness centrality was Korean culture experience, overseas buyer, and trends. Finally, CONCOR analysis resulted in a cluster of six groups: Cosmetics manufacturer, beauty products, beauty exporter, the Korean wave & distribution, beauty growth, beauty business. These analysis results confirm trends related to K-beauty, key components and sales channels for K-beauty industry. In addition, it is judged that it will propose meaningful implications for establishing effective data presentation and marketing strategies for research related to demand for K-beauty.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0